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ABSTRACT 

Increased attention to the relationships between affect and 

learning has led to the development of machine-learned models 

that are able to identify students’ affective states in computerized 

learning environments. Data for these affect detectors have been 

collected from multiple modalities including physical sensors, 

dialogue logs, and logs of students’ interactions with the learning 

environment. While researchers have successfully developed 

detectors based on each of these sources, little work has been done 

to compare the performance of these detectors. In this paper, we 

address this issue by comparing interaction-based and video-based 

affect detectors for a physics game called Physics Playground. 

Specifically, we report on the development and detection accuracy 

of two suites of affect and behavioral detectors. The first suite of 

detectors applies facial expression recognition to video data 

collected with webcams, while the second focuses on students’ 

interactions with the game as recorded in log-files.  Ground–truth 

affect and behavior annotations for both face- and interaction-

based detectors were obtained via live field observations during 

game-play. We first compare the performance of these detectors 

in predicting students’ affective states and off-task behaviors, and 

then proceed to outline the strengths and weakness of each 

approach.    
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1. INTRODUCTION 
The development of models that can automatically detect student 

affect now constitutes a considerable body of research [12,31], 

particularly in computerized learning contexts [1,34,35], where 

researchers have successfully built affect-sensitive learning 

systems that aim to significantly enhance learning outcomes 

[4,21,30]. In general, researchers attempting to develop affect 

detectors have developed systems falling into two categories: 

interaction-based detectors [9] and physical sensor-based 

detectors [12]. Many successful efforts to detect student affect in 

intelligent tutoring systems have used visual, audio or 

physiological sensors, such as webcams, pressure sensitive seat or 

back pads, and pressure-sensing keyboards and mice [3,28,37,41]. 

The development of sensor-based detectors has progressed 

significantly over the last decade, but one limitation to this 

research is that much of it has taken place in laboratory 

conditions, which may not generalize well to real-world settings 

[9]. While efforts are being made to address this issue [4], there 

are often serious obstacles to using sensors in regular classrooms. 

For example, sensor equipment may be bulky or otherwise 

obtrusive, distracting students from their primary tasks (learning); 

sensors may also be expensive and prone to malfunction, making 

large-scale implementation impractical, particularly for schools 

that are already financially strained. On the other hand, because 

physical sensors are external to specific learning systems, their 

use in affect detection creates the opportunity for them to be 

applied to entirely new learning systems, though this possibility 

has yet to be empirically tested. 

Interaction-based detection [9] has also improved over the last 

decade. Unlike sensor-based detectors, which rely upon the 

physical reactions of the student, these detectors infer affective 

states from students’ interactions with computerized learning 

systems [5,7,9,14,29,30]. The fact that interaction-based affect 

detectors rely on student interactions makes it possible for them to 

run in the background in real time at no extra cost to a school that 

is using the learning system. Their unobtrusive and cost-efficient 

nature also makes it feasible to apply interaction-based detectors 

at scale, leading to a growing field of research regarding 

discovery with models [8]. For example, interaction-based affect 

detection has been useful in predicting student long-term 

outcomes, including standardized exam scores [30] and college 

attendance [36]. Basing affect detection on student interactions 

with the system, however, give rise to issues with generalizing 

such detectors across populations [26] and learning systems. 

Because interaction-based detectors are highly dependent on the 

computation of features that captures the student’s interactions 

with the specific learning platform, the type of features generated 

is contingent on the learning system itself, making it difficult to 

apply the same sets of features across different systems. 

It has become clear that each modeling approach has its own 

utility; researchers have thus begun to speculate on effectiveness 

across the various approaches and the possible applications of 

multimodal detectors. However, the body of research that 

addresses this question is currently quite limited. Arroyo and 

colleagues [4] applied sensor-based detectors in a classroom 

setting, and compared performances between interaction-only 

detectors and detectors using both interaction and sensor data, in 

predicting student affect. They found that the inclusion of sensor 

data in the detectors improved performance and accuracy in 

 

 



identifying student affect. However, a direct comparison between 

the two types of detectors was not made. Furthermore, the sample 

size tested was relatively small (26-30 instances depending on 

model), and the data was not cross-validated. Comparisons 

between types of detectors were made in D’Mello and Graesser’s 

study [18], which compared interaction, sensor and face-based 

detectors in an automated tutor. They found face-based detectors 

to perform better than interaction and posture-based detectors at 

predicting spontaneous affective states. However, the study was 

conducted in a controlled laboratory setting, and the facial 

features recorded were manually annotated.   

In this paper, we build detectors of student affect in classroom 

settings, using both sensor-based and interaction-based 

approaches. For feasibility of scaling, we limit physical sensors to 

webcams. For feasibility of comparison, the two types of detectors 

are built in comparable fashions, using the same ground truth data 

obtained from field observations that were conducted during the 

study. We conduct this comparison in the context of 8th and 9th 

grade students playing an educational game, Physics Playground, 

in the Southeastern United States. Different approaches were used 

to build each suite of detectors in order to capitalize on the 

affordances of each modality. However, the methods and metrics 

to establish accuracy were held constant in order to render the 

comparison meaningful. 

2. PHYSICS PLAYGROUND 
Physics Playground (formerly, Newton’s Playground, see [39]) is 

a 2-dimensional physics game where students apply various 

Newtonian principles as they create and guide a ball to a red 

balloon placed on screen [38]. It offers an exploratory and open-

ended game-like interface that allows students to move at their 

own pace. Thus, Physics Playground encourages conceptual 

learning of the relevant physics concepts through experimentation 

and exploration. All objects in the game obey the basic laws of 

physics, (i.e., gravity and Newton’s basic laws of motion). 

 

 

Students can choose to enter one of seven different playgrounds, 

and then play any of the 10 or so levels within that playground. 

Each level consists of various obstacles scattered around the 

space, as well as a balloon positioned at different locations within 

the space (see Figure 1). Students can nudge the ball left and right, 

but will need to create simple machines (called “agents of force 

and motion” in the game) on-screen in order to solve the problems 

presented in the playgrounds. There are four possible agents that 

may be created: ramps, pendulums, levers and springboards. 

Students can also create fixed points along a line drawing to 

create pivots for the agents they create. Students use the mouse to 

draw agents that come to life after being drawn, and use them to 

propel the ball to the red balloon. Students control the weight and 

density of objects through their drawings, making an object 

denser, for example, by filling it with more lines. 

Each level allows multiple solutions, encouraging students to 

experiment with various methods to achieve the goal and guide 

the ball towards the balloon. Trophies are awarded both for 

achieving the goal objective and for solutions deemed particularly 

elegant or creative, encouraging students to attempt each 

playground more than once. This unstructured game-like 

environment provides us with a rich setting in which to examine 

the patterns of students’ affect and behavior as they interact with 

the game platform.   

3. DATA COLLECTION 
Students in the 8th and 9th grade were selected due to the 

alignment of the curriculum in Physics Playground to the state 

standards at those grade levels. The student sample consisted of 

137 students (57 male, 80 female) who were enrolled in a public 

school in the Southeastern U.S. Each group of about 20 students 

used Physics Playground during 55-minute class periods over the 

course of four days.  

An online physics pretest (administered at the start of day 1) and 

posttest (administered at the end of day 4), measured student 

knowledge and skills related to Newtonian physics. In this paper, 

our focus is on data collected during days 2 and 3, during which 

time students were participating in two full sessions of game play.   

The study was conducted in a computer-enabled classroom with 

30 desktop computers. Inexpensive webcams ($30 each) were 

affixed at the top of each computer monitor. At the beginning of 

each session, the webcam software displayed an interface that 

allowed students to position their faces in the center of the 

camera’s view by adjusting the camera angle up or down. This 

process was guided by on-screen instructions and verbal 

instructions from the experimenters, who were available to answer 

any additional questions and to troubleshoot any problems. 

3.1 Field Observations 
Students were observed by two BROMP-certified observers while 

using the Physics Playground software. The Baker Rodrigo 

Ocumpaugh Monitoring Protocol (BROMP 2.0) is a momentary 

time sampling system that has been used to study behavioral and 

affective indicators of student engagement in a number of learning 

environments [9]. BROMP coders observe each student 

individually, in a predetermined order. They record only the first 

predominant behavior and affect that the student displays, but they 

have up to 20 seconds to determine what that might be.    

In this study, BROMP coding was done by the 6th author and the 

4th author.  The 6th author, a co-developer of BROMP, has been 

validated to achieve acceptable inter-rater reliability 

(kappa >= 0.60) with over a dozen other BROMP-certified coders.  

The 4th author achieved sufficient inter-rater reliability 

(kappa >= 0.60) with the 6th author on the first day of this study. 

The coding process was implemented using the Human Affect 

Recording Tool (HART) application for Android devices [6], 

which enforces the protocol while facilitating data collection. The 

study used coding schema that had previously been used in 

several other studies of student engagement [e.g. 17], and 

included boredom, confusion, engaged concentration, and 

frustration (affective states) as well as on task, on-task 

conversation, and off-task (behavioral states). Consistent with 

previous BROMP research, “?” was recorded when a student 

could not be coded, when an observer was unable to identify the 

Figure 1: Screenshot of Physics Playground 



student’s behavior or affective state, or when the affect/behavior 

of the student was clearly a construct outside of the coding 

scheme (such as anger). In total, 220 instances of affect and 95 

instances of behavior were coded as ?.  

Modifications to the affective coding scheme were made on the 

third day of the study, with the addition of delight and dejection. 

Delight was defined as a state of strong positive affect, often 

indicated by broad smiling or a student bouncing in his/her chair. 

This affective state had been coded in previous studies (see [9]), 

and was used to construct detectors. Dejection, defined as a state 

of being saddened, distressed, or embarrassed by failure [9], is 

likely the affect that corresponds with the experience of stuck 

[11,20]. Because it had not been coded in previous research, and 

because it was still quite rare in Physics Playground, it was not 

modeled for this study. 

3.2 Affect and Behavior Incidence 
An initial number of 2,374 observations were made across all 137 

students during the course of the study, culminating in 17.3 

observations made per student across the second and third days of 

the study Only affect observations on the second and third days 

were used in the construction of the detectors, since the first and 

last days mostly consisted of pretests and posttests. Other 

observations were dropped as a result of two students who 

switched computers halfway through data collection, resulting in 

each student being logged under the other student’s ID for part of 

the study. The remaining 2,087 observations recorded during the 

second and third days were used in the construction of both 

detectors Of these 2087 observations, an additional 214 were 

removed prior to the construction of the interaction-based 

detectors and 863 were removed prior to the construction of the 

video-based detectors. Because the criteria for these exclusions 

were methodologically based, further details are provided in the 

sections describing the construction of each detector. 

Within the field observations, the most common affective state 

observed was engaged concentration with 1293 instances 

(62.0%), followed by frustration with 235 instances (11.3%).  

Boredom and confusion were far less frequent despite being 

observed across both second and third days of observation: 66 

instances (3.2%) for boredom and 38 instances (1.8%) for 

confusion. Delight was only coded on the third day, and was also 

rare (45 instances), but it still comprised 2.2% of the total 

observations.  

The frequency of off-task behavior observations was 4.0% (84 

instances), which was unusually low compared to prior classroom 

research in the USA using the same method with other 

educational technologies [27,33]. On-task conversation was seen 

18.6% of the time (388 instances).  

4. INTERACTION-BASED DETECTORS 
To create interaction affect detectors, BROMP affect observations 

were synchronized to the log files of student interactions with the 

software. Features were then generated and a 10-fold student-level 

cross validation process was applied for machine learning, using 

five classification algorithms.  

4.1 Feature Engineering 
The feature engineering process for this study was based largely 

on previous research on student engagement, learning, and 

persistence. The initial set of features comprised 76 gameplay 

attributes that potentially contain evidence for specific affective 

states and behavior. Some attributes included:  

 The total number of springboard structures created in a level  

 The total number of freeform objects drawn in a level  

 The amount of time between start to end of a level  

 The average number of gold and silver trophies obtained in a 

level  

 The number of stacking events (gaming behavior) in a level  

Features created may be grouped into two broad categories. Time-

based features focus on the amount of time elapsed between 

specific student actions, such as starting and pausing a level, as 

well as the time it takes for a variety of events to occur within 

each playground level. Other features take into account the 

number of specific objects drawn or actions and events occurring 

during gameplay, given various conditions.   

Missing values were present at certain points in the dataset when a 

particular interaction was not logged. For example, a feature 

specifying the amount of time between the student beginning a 

level and his/her first restart of the level, would contain a missing 

value if the student manages to complete a level without having to 

restart it. A variety of data imputation approaches were used in 

these situations to fill in the missing values so that we could retain 

the full sample size. We used single, average and zero imputation 

methods to fill in the missing data, and ran the new datasets 

through the machine learning process to identify the best data 

imputation strategy for each affect detector. Zero imputations 

were performed where the missing values were replaced by the 

value 0, while average data imputations took place when the 

average value for the particular feature was computed, and the 

missing values replaced by this average value. In single data 

imputation, we used RapidMiner to build an M5' model [32], a 

tree-based decision model, to predict the values for each feature, 

and applied the model to compute a prediction of the missing 

value.  We also ran the original dataset without any imputation 

through any of the classification algorithms that allowed it.   

Of the 2087 BROMP field observations that were collected, 214 

instances were removed as most of these instances corresponded 

to times when the student was inactive. Additional instances were 

removed where the observer recorded a ?, the code used when 

BROMP observers cannot identify a specific affect or behavior or 

when students are not at their workstation. As a result, these 

instances did not contribute to the building of the respective affect 

and behavior detectors.  

4.2 Machine Learning 
Data collection was followed by a multi-step process to develop 

interaction-based detectors of each affect. A two-class approach 

was used for each affective state, where that affective state was 

discriminated from all others. For example, engaged concentration 

was discriminated from all frustrated, bored, delighted, and 

confused instances combined (referred to as “all other”). 

Behaviors were grouped into two classes: 1) off task, and 2) both 

on task behaviors and on task conversation related to the game.   

4.2.1 Resampling of Data 
Because observations of several of the constructs included in this 

study were infrequent, (< 5.0% of the total number of 

observations), there were large class imbalances in our data 

distributions. To correct for this, we used the cloning method for 

resampling, generating copies of respective positive affect on the 

training data, in order to make class frequency more balanced for 

detector development. 



4.2.2 Feature Selection and Cross-Validation 
Correlation-based filtering was used to remove features that had 

very low correlation with the predicted affect and behavior 

constructs (correlation coefficient > 0.04) from the initial feature 

set. Feature selection for each detector was then conducted using 

forward selection. 

Detectors for each construct were built in the RapidMiner 5.3 

data-mining software, using common classification algorithms 

that have been previously shown to be successful in building 

affect detectors: JRip, J48 decision trees, KStar, Naïve-Bayes, 

step and logistic regression. Models were validated using 10-fold 

student-level batch cross-validation. The performance metric of A' 

was computed on the original, non-resampled, datasets.  

4.3 Selected Features 
From the forward selection process, a combination of features was 

selected in each of the affect and behavior detectors that provide 

some insight into the type of student interactions that predict the 

particular affective state or behavior.  

The features for boredom involve a student spending more time 

between actions on average. A bored student would also expend 

less effort to guide the ball object to move in the right direction, as 

indicated by fewer nudges made on the ball object to move it, and 

more ball objects being lost from the screen.   

The features that predict confusion are characterized by a student 

spending more time before his/her first nudge to make the ball 

object move, and drawing fewer objects in a playground level. A 

student who is confused may not have known how to draw and 

move the ball object towards the balloon, thus spending a long 

time within a certain level and resulting in a lower number of 

levels attempted in total.  

From the features selected, delight appears to ensue from some 

indicator of success, such as a student who is able to achieve a 

silver trophy earlier on during gameplay, and who completes more 

levels in total. We can also portray the student who experiences 

delight as someone who was able to achieve the objective without 

having to make multiple attempts to draw the relevant simple 

machines (such as springboards and pendulums).  

The features for engaged concentration would describe a student 

who is able to complete a level in fewer attempts but erases the 

ball object more often during each attempt, indicating that the 

student was putting in more effort to refine his/her strategies 

within a single attempt at the level. Engaged concentration would 

also depict a student who has experienced success during 

gameplay and achieved a silver trophy in a shorter than average 

time, perhaps because of his/her focused efforts during each 

attempt. 

Table 1. Features in the final interaction-based detectors 

of each construct  

Affect/ 

Behavior 
Selected features 

Boredom 

Time between actions within a level 

Total number of objects that were “lost” (i.e. 

Moved off the screen) 

Total number of nudges made on the ball 

object to move it 

Confusion 
Amount of time spent before the ball object 

was nudged to move 

Total number of levels attempted 

Total number of objects drawn within the level 

Delight 

Number of silver trophies achieved 

Consecutive number of pendulums and 

springboards created 

Total number of levels attempted 

Total number of levels completed successfully 

Engaged 

Concentration 

Total number of silver trophies achieved in 

under the average time 

Total number of level re-starts within a 

playground 

Total number of times a ball object was erased 

consecutively 

Frustration 

Total number of silver trophies achieved in 

under the average time 

Total number of level re-starts within a 

playground 

Total number of levels completed successfully 

Total number of levels attempted 

Off-task 

Behavior 

Time spent in between each student action 

Total number of pauses made within a level 

Total number of times a student quits a level 

without completing the objective and obtaining 

a trophy 

 

Unlike engaged concentration, a student who experiences 

frustration failed to achieve the objective and achieved fewer 

silver trophies within the average time taken. Student frustration, 

as seen in the features, would also result in the student having to 

make more attempts at a level due to repeated failure, thus 

resulting in fewer levels attempted in total.  

Lastly, behavior that is off-task involves a student who spends 

more time pausing the level or between actions as a whole. It is 

also apparent in a student who draws fewer objects and quits more 

levels without completing them, implying that he or she did not 

put in much effort to complete the playground levels.  

5. VIDEO-BASED DETECTORS 
The video-based detectors have been reported in a recent 

publication [10]. In the interest of completeness, the main 

approach is re-presented here. There are also small differences in 

the results reported here due to a different validation approach that 

was used to make meaningful comparisons with interaction-based 

detectors. 

Video-based affect detectors were constructed using FACET (no 

longer available as standalone software), a commercialized 

version of the Computer Expression Recognition Toolbox 

(CERT) software [25]. FACET is a computer vision tool used to 

automatically detect Action Units (AUs), which are labels for 

specific facial muscle activations (e.g. lowered brow). AUs 

provide a small set of features for use in affect detection efforts. A 

large database of AU-labeled data can be used to train AU 



detectors, which can then be applied to new data to generate AU 

labels.   

5.1 Feature Engineering 
FACET provides estimates of the likelihood estimates for the 

presence of nineteen AUs as well as head pose (orientation) and 

position information detected from video. Data from FACET was 

temporally aligned with affect observations in small windows. We 

tested five different window sizes (3, 6, 9, 12, and 20 seconds) for 

creation of features. Features were created by aggregating values 

obtained from FACET (AUs, orientation and position of the face) 

in a window of time leading up to each observation using 

maximum, median, and standard deviation. For example, with a 

six-second window we created three features from the AU4 

channel (brow lowered) by taking the maximum, median, and 

standard deviation of AU4 likelihood within the six seconds 

leading up to an affect observation. In all there were 78 facial 

features. 

We used features computed from gross body movement present in 

the videos as well. Body movement was calculated by measuring 

the proportion of pixels in each video frame that differed from a 

continuously updated estimate of the background image generated 

from the four previous frames. Previous work has shown that 

features derived using this technique correlate with relevant 

affective states including boredom, confusion, and frustration 

[17]. We created three body movement features using the 

maximum, median, and standard deviation of the proportion of 

different pixels within the window of time leading up to an 

observation, similar to the method used to create FACET features. 

Of the initial 2087 instances available for us to train our video-

based detectors on, about a quarter (25%) were discarded because 

FACET was not able to register the face and thus could not 

estimate the presence of AUs and computation of features. Poor 

lighting, extreme head pose or position, occlusions from hand-to-

face gestures, and rapid movements can all cause face registration 

errors; these issues were not uncommon due to the game-like 

nature of the software and the active behaviors of the young 

students in this study. We also removed 9% of instances because 

the window of time leading up to the observation contained less 

than one second (13 frames) of data in which the face could be 

detected, culminating in 1224 instances where we had sufficient 

video data to train our affect models on.  

5.2 Machine Learning 
We also built separate detectors for each affective state similar to 

the interaction-based detectors. Building individual detectors for 

each state allows the parameters (e.g., window size, features used) 

to be optimized for that particular affective state.  

5.2.1 Resampling of Data 
Like the interaction-based detectors, there were large class 

imbalances in the affective and behavior distributions. Two 

sampling techniques, different from the one used in the building 

of interaction-based detectors, were used on the training data to 

compensate for this imbalance. These two techniques included 

downsampling (removal of random instances from the majority 

class) and synthetic oversampling (with SMOTE; [13]) to create 

equal class sizes. SMOTE creates synthetic training data by 

interpolating feature values between an instance and randomly 

chosen nearest neighbors. The distributions in the testing data 

were not changed, to preserve the validity of the results. 

5.2.2 Feature Selection and Cross-Validation 
We used tolerance analysis to eliminate features with high 

multicollinearity (variance inflation factor > 5) [2]) for video-

based detectors. Feature selection was then used to obtain a more 

diagnostic set of features for classification. RELIEF-F [24] was 

run on the training data in order to rank features. A proportion of 

the highest ranked features were then used in the models (.1, .2, 

.3, .4, .5, and .75 proportions were tested). A detailed analysis or 

table of the features selected for the video-based detectors is not 

included because of the large number of features utilized by these 

detectors.  

We then built classification models using 14 different classifiers 

including support vector machines, C4.5 trees, Bayesian 

classifiers, and others in the Waikato Environment for Knowledge 

Analysis (WEKA), a machine learning tool [23]. 

6. RESULTS 
We evaluated the extent to which the detectors for each construct 

are able to identify their respective affect. Both detectors were 

evaluated using a 10-fold student-level batch cross-validation. In 

this process, students in the training dataset are randomly divided 

into ten groups of approximately equal size. A detector is built 

using data from all possible combinations of 9 out of the overall 

10 groups, and finally tested on the last group. Cross-validation at 

this level increases the confidence that the affect and behavior 

Table 2. A’ performance values for affect and behavior using video-based and interaction-based detectors 

Affect/Behavior 

Construct 

Interaction-Based Detectors Video-Based Detectors 

Classifier 

Data 

Imputation 

Scheme 

A' 
No. 

Instances 
Classifier A' 

No. 

Instances 

Boredom 
Logistic 

regression 
Zero 0.629 1732 

Classification via 

Clustering 
0.617 1305 

Confusion Step regression Average 0.588 1732 Bayes Net 0.622 1293 

Delight 
Logistic 

regression 
None 0.679 1732 

Updateable Naïve 

Bayes 
0.860 1003 

Engaged 

Concentration 
Naïve Bayes Zero 0.586 1732 Bayes Net 0.658 1228 

Frustration 
Logistic 

regression 
Average 0.559 1732 Bayes Net 0.632 1132 

Off-Task 

behavior 
Step regression Zero 0.765 1829 Logistic Regression 0.780 1381 

 



detectors will be more accurate for new students. To ensure 

comparability between the two sets of detectors, the cross-

validation process was carried out with the same randomly 

selected groups of students.   

Detector performance was assessed using A' values that were 

computed as the Wilcoxon statistic [22]. A' is the probability that 

the given algorithm will correctly identify whether an observation 

is an example of a specific affective state. A' can be approximated 

by the Wilcoxon statistic and is equivalent to the area under the 

Receiver Operating Characteristic (ROC) curve in signal detection 

theory. A detector with a performance of A' = 0.5 is performing at 

chance, while a model with a performance of A' = 1.0 is 

performing with perfect accuracy. 

Table 2 shows the performance of the two detector suites. Both 

interaction-based and video-based detectors’ performance over all 

six affective and behavior constructs was better than chance 

(A' = 0.50). On average, the interaction-based detectors yielded an 

A' of 0.634 while the video-based detectors had an average A' of 

0.695. This difference can be mainly attributed to the detection of 

delight, which was much more successful for the video-based 

detectors. Accuracy of the two detector suites was much more 

comparable for the other constructs, though the video-based 

detectors showed some advantages for engaged concentration and 

frustration, and were higher for 5 of the 6 constructs. 

The majority of the video-based detectors performed the best 

when using the Bayes Net classifier, except for boredom, delight 

and off-task behavior. In comparison, logistic and step regression 

composed the classifiers that produced the best performance for 

most of the interaction-based detectors, with the exception of 

engaged concentration.  

7. DISCUSSION 
Affect detection is becoming an important component in 

educational software, which aims to improve student outcomes by 

dynamically responding to student affect. Affect detectors have 

been successfully built and implemented via different modalities 

[3,16,41], and each have their own advantages and disadvantages 

when implemented in a noisy classroom environment. This study 

is an extension of previous research conducted on both video-

based and interaction-based detectors. Having been mostly built in 

controlled laboratory settings [12], we now test the performance 

for video-based detectors within an uncontrolled computer-

enabled classroom environment that is more representative of an 

authentic educational setting. Although interaction-based 

detectors have been built to some degree of success in whole 

classroom settings [5,7,29], we now test the performance of these 

affect detectors in an open-ended and exploratory educational 

game platform.   

In this paper, we compared the performances of six video-based 

and interaction-based detectors on student affect and behavior in 

the game-based software. We will discuss the implications of 

these comparisons in this section, as well as future work.  

7.1 Main Findings 
The performances of both detectors in the six affects and off-task 

behavior appear to be at similar levels above chance for five of the 

constructs, with video-based detectors performing slightly better 

than interaction-based detectors on the whole, and with video-

based detector showing a stronger advantage for delight. Several 

factors may have help to explain the relative performances.   

Performance of video detectors could be influenced by the 

uncontrolled whole-classroom setting in which video data is 

collected, where there are higher chances of video data being 

absent or compromised due to unpredictable student movement. 

While there were initially 2,087 instances of affect and behavior 

observed and coded, a moderate proportion of facial data 

instances were dropped from the final dataset when building the 

models. There were 44 instances of affect observation that were 

dropped either because the video was corrupted or incomplete, or 

because no video was recorded at all. In addition, there were 520 

instances where video was recorded, but facial data were not 

detected for some reason, perhaps because the student had left the 

workstation, or when the face could not be detected in the video. 

An additional 211 instances were removed even though facial data 

was detected, because the facial data recorded was present for less 

than 1 second, such that no features could be calculated.  

For interaction-based detectors, the exploratory and open-ended 

user-interface [40] constitutes a unique challenge in creating 

accurate models for student affect and behavior. The open-ended 

interface included multiple goals and several possible solutions 

that students could come up with to successfully complete each 

level. During gameplay, there are also multiple factors that could 

contribute to a student’s failure to complete a level, such as 

conceptual knowledge as well as implementation of appropriate 

objects. A student with accurate conceptual knowledge of simple 

machines and Newtonian physics may still fail the level because 

of problems implementing the actions needed to guide the ball to 

the target. On the other hand, a student with misconceptions about 

the relevant physics topics may nevertheless be able to complete 

the level successfully through systematic experimentation. The 

possible combinations of student actions that result in failure or 

success in a playground level would hence contribute to the lower 

accuracy of interaction-based detectors on identifying students’ 

affect based on their interactions with the software.  

Another issue with the Physics Playground software could be that 

there are fewer indicators of success per unit of time, as compared 

to other learning software that have been studied previously, such 

as the Cognitive Tutors [e.g. 5]. During gameplay, the system is 

able to recognize when combinations of objects the student draws 

forms an eligible agent. However, this indicator of success or 

failure is not apparent to the student until after he or she creates 

the ball object and applies a relevant force to trigger a simulation. 

Since students often spend at least several minutes building agents 

and ball objects, this results in coarser-grained indicators and 

evaluations of success and failure. This is in comparison to affect 

detectors created in previous studies for the Cognitive Tutor 

software, in which there was regular evaluation of each question 

attempted, thus resulting in more indicators of success over a 

given time period. The combination of open-endedness and lack 

of success indicators per unit of time consequently leads to greater 

difficulty translating the semantics of student-software 

interactions into accurate affect predictions.  

When comparing between the two sets of detectors, physical 

detectors make direct use of students’ facial features and bodily 

movements captured by webcams and constitute embodied 

representations of students’ affective states. On the other hand, 

interaction detectors were built based on student actions within 

the software, which serves as an indirect proxy of the students’ 

actual affective states. These detectors rely, therefore on the 

degree to which student interactions with the software are 

influenced (or not) by the affective states they experience. Perhaps 

not surprisingly, video-based detectors perform somewhat better 



in predicting some affective states (e.g., delight, engaged 

concentration, and frustration). Although the video detectors are 

limited by missing data, interaction-based detectors can only 

detect something that causes students to change their behaviors 

within the software, which can be challenging given the issues 

arising from the open-ended game platform. Simply put, face-

based affect detectors appear to provide more accurate affect 

estimates but in fewer situations, while interaction-based affect 

detectors provide less accurate estimates, but are applicable in 

more situations. The two approaches thus appear to be quite 

complementary. 

7.2 Limitations 
In comparing the performances between interaction and video-

based detectors, there exist several limitations in ensuring an 

equivalent set of methods for a fair comparison to be made.  

Although both types of detectors were built based on the same 

ground truth data, varying sets of limitations exist that are unique 

to each set of detectors. A smaller proportion of instances were 

retained to build video-based detectors due to missing video data, 

which may influence performance comparison. Interaction-based 

detectors, on the other hand, are relatively more sensitive to the 

type of educational platform it is built upon, as compared to 

video-based detectors. The type of learning platform thus affects 

the variety of features that are relevant and useful in building the 

affect and behavior detectors, which in turn impacts its 

performance relative to previous work.  

For both detectors, the sample size available for some of the 

affective states was quite limited, which made it necessary to 

oversample the training data in order to compensate for the class 

imbalances. However, because each detector was built on 

different platforms, different methods were used in oversampling 

the datasets. The need to conduct data imputations was also 

unique to interaction-based detectors due to the nature of some of 

the computed features, and not required for video-based detectors. 

The difference in these methods may in turn affect performance 

comparison between the two types of detectors.  

7.3 Concluding Remarks 
Given the various advantages and limitations to each type of 

detector in accurately predicting student affect, it may be 

beneficial for affect detection strategies to include a combination 

of video-based and interaction-based detectors. While video-based 

detectors provide more direct measures of student affect, practical 

issues may lead to video data being absent or unusable in 

detecting affect, simply because there is no facial data available to 

detect affect in. These situations may be alleviated by the 

presence of interaction data that are recorded automatically during 

students’ use of the software. On the other hand, video-based 

facial data would be able to provide support to interaction data 

and boost the accuracy in which affective states are detected 

among students. This form of late-fusion or decision-level fusion 

can also be complemented by early-fusion or feature-level fusion, 

where features from both modalities are combined prior to 

classification. Whether this leads to improved accuracy, as 

routinely documented in the literature on multimodal affect 

detection [15,16] awaits future work. 
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